650 lines (649 with data), 49.1 kB
{
"cells": [
{
"cell_type": "markdown",
"id": "opened-florist",
"metadata": {},
"source": [
"import time\n",
"seconds = time.time()\n",
"print(\"Time in seconds since beginning of run:\", seconds)\n",
"local_time = time.ctime(seconds)\n",
"print(local_time)\n",
"# Pegasos Quantum Support Vector Classifier\n",
"\n",
"There's another SVM based algorithm that benefits from the quantum kernel method. Here, we introduce an implementation of a another classification algorithm, which is an alternative version to the `QSVC` available in Qiskit Machine Learning and shown in the [\"Quantum Kernel Machine Learning\"](./03_quantum_kernel.ipynb) tutorial. This classification algorithm implements the Pegasos algorithm from the paper \"Pegasos: Primal Estimated sub-GrAdient SOlver for SVM\" by Shalev-Shwartz et al., see: https://home.ttic.edu/~nati/Publications/PegasosMPB.pdf.\n",
"\n",
"This algorithm is an alternative to the dual optimization from the `scikit-learn` package, benefits from the kernel trick, and yields a training complexity that is independent of the size of the training set. Thus, the `PegasosQSVC` is expected to train faster than QSVC for sufficiently large training sets.\n",
"\n",
"The algorithm can be used as direct replacement of `QSVC` with some hyper-parameterization."
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "759a01c7-b426-4ebe-8a4e-c9b9a1104603",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time in seconds since beginning of run: 1700640796.3861148\n",
"Wed Nov 22 08:13:16 2023\n"
]
}
],
"source": [
"import time\n",
"seconds = time.time()\n",
"print(\"Time in seconds since beginning of run:\", seconds)\n",
"local_time = time.ctime(seconds)\n",
"print(local_time)"
]
},
{
"cell_type": "markdown",
"id": "thirty-painting",
"metadata": {},
"source": [
"Let's generate some data:"
]
},
{
"cell_type": "code",
"execution_count": 57,
"id": "impressed-laser",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import make_blobs\n",
"\n",
"# example dataset\n",
"features, labels = make_blobs(n_samples=40, n_features=2, centers=2, random_state=3, shuffle=True)"
]
},
{
"cell_type": "markdown",
"id": "moderate-yugoslavia",
"metadata": {},
"source": [
"We pre-process the data to ensure compatibility with the rotation encoding and split it into the training and test datasets."
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "adolescent-composer",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"\n",
"features = MinMaxScaler(feature_range=(0, np.pi)).fit_transform(features)\n",
"\n",
"train_features, test_features, train_labels, test_labels = train_test_split(\n",
" features, labels, train_size=30, shuffle=False\n",
")"
]
},
{
"cell_type": "markdown",
"id": "central-poverty",
"metadata": {},
"source": [
"We have two features in the dataset, so we set a number of qubits to the number of features in the dataset.\n",
"\n",
"Then we set $\\tau$ to the number of steps performed during the training procedure. Please note that, there is no early stopping criterion in the algorithm. The algorithm iterates over all $\\tau$ steps.\n",
"\n",
"And the last one is the hyperparameter $C$. This is a positive regularization parameter. The strength of the regularization is inversely proportional to $C$. Smaller $C$ induce smaller weights which generally helps preventing overfitting. However, due to the nature of this algorithm, some of the computation steps become trivial for larger $C$. Thus, larger $C$ improve the performance of the algorithm drastically. If the data is linearly separable in feature space, $C$ should be chosen to be large. If the separation is not perfect, $C$ should be chosen smaller to prevent overfitting."
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "dying-dispatch",
"metadata": {},
"outputs": [],
"source": [
"# number of qubits is equal to the number of features\n",
"num_qubits = 2\n",
"\n",
"# number of steps performed during the training procedure\n",
"tau = 50\n",
"\n",
"# regularization parameter\n",
"C = 1000"
]
},
{
"cell_type": "markdown",
"id": "improving-wilderness",
"metadata": {},
"source": [
"The algorithm will run using:\n",
"\n",
"- The default fidelity instantiated in `FidelityQuantumKernel`\n",
"- A quantum kernel created from `ZFeatureMap`"
]
},
{
"cell_type": "code",
"execution_count": 60,
"id": "automated-allergy",
"metadata": {},
"outputs": [],
"source": [
"from qiskit import BasicAer\n",
"from qiskit.circuit.library import ZFeatureMap\n",
"from qiskit.utils import algorithm_globals\n",
"\n",
"from qiskit_machine_learning.kernels import FidelityQuantumKernel\n",
"\n",
"algorithm_globals.random_seed = 12345\n",
"\n",
"feature_map = ZFeatureMap(feature_dimension=num_qubits, reps=1)\n",
"\n",
"qkernel = FidelityQuantumKernel(feature_map=feature_map)"
]
},
{
"cell_type": "markdown",
"id": "attractive-stationery",
"metadata": {},
"source": [
"The implementation `PegasosQSVC` is compatible with the `scikit-learn` interfaces and has a pretty standard way of training a model. In the constructor we pass parameters of the algorithm, in this case there are a regularization hyper-parameter $C$ and a number of steps.\n",
"\n",
"Then we pass training features and labels to the `fit` method, which trains a models and returns a fitted classifier.\n",
"\n",
"Afterwards, we score our model using test features and labels."
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "representative-thumb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"PegasosQSVC classification test score: 1.0\n"
]
}
],
"source": [
"from qiskit_machine_learning.algorithms import PegasosQSVC\n",
"\n",
"pegasos_qsvc = PegasosQSVC(quantum_kernel=qkernel, C=C, num_steps=tau)\n",
"\n",
"# training\n",
"pegasos_qsvc.fit(train_features, train_labels)\n",
"\n",
"# testing\n",
"pegasos_score = pegasos_qsvc.score(test_features, test_labels)\n",
"print(f\"PegasosQSVC classification test score: {pegasos_score}\")"
]
},
{
"cell_type": "markdown",
"id": "sustainable-empire",
"metadata": {},
"source": [
"For visualization purposes we create a mesh grid of a predefined step that spans our minimum and maximum values we applied in MinMaxScaler. We also add some margin to the grid for better representation of the training and test samples."
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "judicial-pottery",
"metadata": {},
"outputs": [],
"source": [
"grid_step = 0.2\n",
"margin = 0.2\n",
"grid_x, grid_y = np.meshgrid(\n",
" np.arange(-margin, np.pi + margin, grid_step), np.arange(-margin, np.pi + margin, grid_step)\n",
")"
]
},
{
"cell_type": "markdown",
"id": "marine-constitution",
"metadata": {},
"source": [
"We convert the grid to the shape compatible with the model, the shape should be `(n_samples, n_features)`.\n",
"Then for each grid point we predict a label. In our case predicted labels will be used for coloring the grid."
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "competitive-outdoors",
"metadata": {},
"outputs": [],
"source": [
"meshgrid_features = np.column_stack((grid_x.ravel(), grid_y.ravel()))\n",
"meshgrid_colors = pegasos_qsvc.predict(meshgrid_features)"
]
},
{
"cell_type": "markdown",
"id": "former-constraint",
"metadata": {},
"source": [
"Finally, we plot our grid according to the labels/colors we obtained from the model. We also plot training and test samples."
]
},
{
"cell_type": "code",
"execution_count": 64,
"id": "monetary-knife",
"metadata": {
"tags": [
"nbsphinx-thumbnail"
]
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAHDCAYAAADlUVpaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ8klEQVR4nO3deVxU9eI//teZAQaU3QRECUwRIRTEMsBUJBIVF7LFMLdMb/dercxrpfn5alpG3a6mN00rFyqv2uL6k65e0tAW0hQpNcIyUEsWTRZBReC8f38gEyMzMAMzzBl4PR+PeSjnvM8578MI8/J93oskhBAgIiIiUiiVtStARERE1BiGFSIiIlI0hhUiIiJSNIYVIiIiUjSGFSIiIlI0hhUiIiJSNIYVIiIiUjSGFSIiIlI0hhUiIiJSNIYVIgWaOnUqAgICrHb9lJQUSJKEvLw8ne1vvPEG7rjjDqjVaoSHhwMAAgICMHXq1Fav40svvQRJklr9ukTU+hhWqMXqPtjqXo6OjujVqxdmzZqFwsJCa1dPUcrKyrB48WKEhYXB2dkZTk5OCA0NxQsvvIALFy5Yu3qN+t///ofnn38eAwcOxMaNG/Hqq69a/JpXr17FSy+9hPT0dItfi4iUS+LaQNRSKSkpePzxx7FkyRJ0794d169fx1dffYUPP/wQ/v7+OHnyJDp06GDtalrdr7/+iri4OJw7dw4PP/ww7r33Xjg4OOCHH37Ali1b4OnpidOnTwOobVlJT09v0LLRWmpqalBVVQWNRqNtvZg3bx7eeOMNXLt2DQ4ODtqylZWVUKlUsLe3N3s9Ll26hM6dO2PRokV46aWXdPZVV1ejuroajo6OZr8uESmLnbUrQG3HiBEjcNdddwEApk+fjk6dOmH58uXYtWsXkpKSrFw766qursa4ceNQWFiI9PR03HvvvTr7ly5ditdff91KtWtIrVZDrVbrbCsqKoKTk5NOUAEAjUbTmlXTsrOzg50df4URtQd8DEQWExsbCwDIzc3Vbtu0aRP69+8PJycneHp64tFHH8X58+cbHLt69WrccccdcHJywoABA/Dll18iJiYGMTEx2jI3btzAwoUL0b9/f7i5uaFjx44YNGgQvvjiiwbn27p1K/r37w8XFxe4urqiT58+WLlypU6ZX3/9FQ8//DA8PT3RoUMHREZGIjU1tcG53nrrLdx5553o0KEDPDw8cNddd2Hz5s2Nfi+2bduG77//HgsWLGgQVADA1dUVS5cubfQc//rXvxAdHY1OnTrByckJ/fv3x6efftqgXFpaGu699164u7vD2dkZQUFBePHFF026h1v7rEiShI0bN6KiokL7uC8lJQWA/j4rJSUlePbZZxEQEACNRoNu3bph8uTJuHTpEgDj3ru8vDx07twZALB48WLtdetaWPT1WamursbLL7+MHj16QKPRICAgAC+++CIqKyt1ygUEBGDUqFH46quvMGDAADg6OuKOO+7ABx980Oh7QETWwbBCFnPmzBkAQKdOnQDUth5MnjwZgYGBWL58OWbPno39+/dj8ODBKCkp0R63Zs0azJo1C926dcM///lPDBo0CImJifjtt990zl9WVoZ169YhJiYGr7/+Ol566SVcvHgR8fHxyMrK0pZLS0tDUlISPDw88Prrr+O1115DTEwMvv76a22ZwsJCREdHY9++ffj73/+OpUuX4vr16xgzZgx27NihLffee+/h6aefRkhICFasWIHFixcjPDwchw8fbvR7sXv3bgDApEmTmvW9BICVK1eiX79+WLJkCV599VXY2dnh4Ycf1glUp06dwqhRo1BZWYklS5Zg2bJlGDNmjM69NucePvzwQwwaNAgajQYffvghPvzwQwwePFhv2fLycgwaNAhvvfUWhg0bhpUrV+Kvf/0rfvrpJ+17aMx717lzZ6xZswYA8MADD2ivO27cOIP1nD59OhYuXIiIiAi8+eabGDJkCJKTk/Hoo482KPvLL7/goYcewv33349ly5bBw8MDU6dOxalTpwy/CURkHYKohTZu3CgAiM8//1xcvHhRnD9/XmzdulV06tRJODk5id9++03k5eUJtVotli5dqnPsiRMnhJ2dnXZ7ZWWl6NSpk7j77rtFVVWVtlxKSooAIIYMGaLdVl1dLSorK3XOV1xcLLy9vcW0adO025555hnh6uoqqqurDd7D7NmzBQDx5ZdfardduXJFdO/eXQQEBIiamhohhBBjx44Vd955p8nfo379+gk3Nzejy0+ZMkX4+/vrbLt69arO1zdu3BChoaEiNjZWu+3NN98UAMTFixcNntuYe6h7T3Nzc3Xq1LFjxwZl/f39xZQpU7RfL1y4UAAQ27dvb1BWlmUhhPHv3cWLFwUAsWjRogbnWrRokaj/KywrK0sAENOnT9cpN3fuXAFAHDhwQKfOAMShQ4e024qKioRGoxH/+Mc/GlyLiKyLLStkNnFxcejcuTP8/Pzw6KOPwtnZGTt27EDXrl2xfft2yLKMRx55BJcuXdK+fHx8EBgYqG3+P3r0KP744w/MmDFDpz/CY489Bg8PD53rqdVqbf8JWZZx+fJlVFdX46677kJmZqa2nLu7OyoqKpCWlmaw7p999hkGDBig84jG2dkZf/nLX5CXl4cff/xRe67ffvsN3333nUnfm7KyMri4uJh0zK2cnJy0fy8uLkZpaSkGDRrU4F4BYNeuXZBlWe95mnsPxtq2bRvCwsLwwAMPNNhX99jG2PfOFJ999hkAYM6cOTrb//GPfwBAg0d6ISEhGDRokPbrzp07IygoCL/++muzrk9ElsOwQmazevVqpKWl4YsvvsCPP/6IX3/9FfHx8QCAn3/+GUIIBAYGonPnzjqv7OxsFBUVAQDOnj0LAOjZs6fOue3s7PTOO/L++++jb9++cHR0RKdOndC5c2ekpqaitLRUW+bvf/87evXqhREjRqBbt26YNm0a9u7dq3Oes2fPIigoqMH5g4ODder1wgsvwNnZGQMGDEBgYCBmzpyp84jFEFdXV1y5cqXJco3Zs2cPIiMj4ejoCE9PT+1jkvr3On78eAwcOBDTp0+Ht7c3Hn30UXz88cc6waW592CsM2fOIDQ0tMlyxrx3pjh79ixUKlWDfzs+Pj5wd3fXvod1br/99gbn8PDwQHFxcbOuT0SWw7BCZjNgwADExcUhJiYGwcHBUKn+/OclyzIkScLevXuRlpbW4PXOO++YfL1NmzZh6tSp6NGjB9avX689d2xsrM6Hs5eXF7KysrB7926MGTMGX3zxBUaMGIEpU6aYfM3g4GDk5ORg69atuPfee7Ft2zbce++9WLRoUaPH9e7dG6WlpXo7Exvjyy+/xJgxY+Do6Ii3334bn332GdLS0jBhwgSIerMPODk54dChQ/j8888xadIk/PDDDxg/fjzuv/9+1NTUtOgezMnY9645jJ0o7tbRTnUEZ3MgUhyGFWoVPXr0gBAC3bt3R1xcXINXZGQkAMDf3x9AbefH+qqrqxvMOfLpp5/ijjvuwPbt2zFp0iTEx8cjLi4O169fb3B9BwcHjB49Gm+//TbOnDmDJ598Eh988IH2Ov7+/sjJyWlw3E8//aRTLwDo2LEjxo8fj40bN+LcuXNISEjQdsg1ZPTo0QBqP6SbY9u2bXB0dMS+ffswbdo0jBgxAnFxcXrLqlQq3HfffVi+fDl+/PFHLF26FAcOHNAZadOcezBWjx49cPLkyUbLGPvemTJDrb+/P2RZxs8//6yzvbCwECUlJTrvIRHZFoYVahXjxo2DWq3G4sWLG/zPVQiBP/74AwBw1113oVOnTnjvvfdQXV2tLfOf//ynQfN83f+M65/v8OHDyMjI0ClXd+46KpUKffv2BQDtkNaRI0fiyJEjOsdWVFTg3XffRUBAAEJCQvSey8HBASEhIRBCoKqqyuD9P/TQQ+jTpw+WLl3aoH4AcOXKFSxYsMDg8Wq1GpIkaVtHgNqhvTt37tQpd/ny5QbH1k2LX3evzb0HYz344IP4/vvvdUZR1al7r4x97+omE6w/WsyQkSNHAgBWrFihs3358uUAgISEBONugIgUhzMqUavo0aMHXnnlFcyfPx95eXlITEyEi4sLcnNzsWPHDvzlL3/B3Llz4eDggJdeeglPPfUUYmNj8cgjjyAvLw8pKSno0aOHzv+0R40ahe3bt+OBBx5AQkICcnNzsXbtWoSEhKC8vFxbbvr06bh8+TJiY2PRrVs3nD17Fm+99RbCw8O1fVLmzZuHLVu2YMSIEXj66afh6emJ999/H7m5udi2bZv2kdawYcPg4+ODgQMHwtvbG9nZ2Vi1ahUSEhIa7UBrb2+P7du3Iy4uDoMHD8YjjzyCgQMHwt7eHqdOncLmzZvh4eFhcK6VhIQELF++HMOHD8eECRNQVFSE1atXo2fPnvjhhx+05ZYsWYJDhw4hISEB/v7+KCoqwttvv41u3bppOw839x6M9dxzz+HTTz/Fww8/jGnTpqF///64fPkydu/ejbVr1yIsLMzo987JyQkhISH46KOP0KtXL3h6eiI0NFRvn5iwsDBMmTIF7777LkpKSjBkyBAcOXIE77//PhITEzF06NAW3xsRWYmVRiFRG1I3zPW7775rsuy2bdvEvffeKzp27Cg6duwoevfuLWbOnClycnJ0yv373/8W/v7+QqPRiAEDBoivv/5a9O/fXwwfPlxbRpZl8eqrr2rL9evXT+zZs6fBsN9PP/1UDBs2THh5eQkHBwdx++23iyeffFLk5+frXPPMmTPioYceEu7u7sLR0VEMGDBA7NmzR6fMO++8IwYPHiw6deokNBqN6NGjh3juuedEaWmpUd+r4uJisXDhQtGnTx/RoUMH4ejoKEJDQ8X8+fN16qNv6PL69etFYGCg0Gg0onfv3mLjxo0Nhu/u379fjB07Vvj6+goHBwfh6+srkpKSxOnTp026h5YMXRZCiD/++EPMmjVLdO3aVTg4OIhu3bqJKVOmiEuXLgkhjH/vhBDim2++Ef379xcODg46w5hvvXchhKiqqhKLFy8W3bt3F/b29sLPz0/Mnz9fXL9+vUGdExISGtzLkCFDdIbHE5EycG0gsgmyLKNz584YN24c3nvvPWtXh4iIWhH7rJDiXL9+vUG/lg8++ACXL1/WmW6fiIjaB7askOKkp6fj2WefxcMPP4xOnTohMzMT69evR3BwMI4dO9ZgIT0iImrb2MGWFCcgIAB+fn7497//jcuXL8PT0xOTJ0/Ga6+9xqBCRNQOsWWFiIiIFI19VoiIiEjRGFaIiIhI0Wyiz4osy7hw4QJcXFxMmn6biIjaDiEErly5Al9fX521x1pKlmXcuHHDbOejptnb2xtcn0sfmwgrFy5cgJ+fn7WrQURECnD+/Hl069bNLOe6ceMGcnNzW7yAJpnO3d0dPj4+RjVC2ERYqZsC/DF0hYMZn1x92Gew2c5FRLomnThk7SqQkWzld6GoqULNjx+bZVkIoLalJj8/H2q1Gn5+fmZtrSHDhBC4evUqioqKAABdunRp8hibCCt1qcsBKrOGFUnNYbBElmLOn1WyLFv7XWiu7gDV1dW4evUqfH19tYtmUutwcnICABQVFcHLy6vJR0L8bUJERO1S3SrmnL/JOuoCojGrvTOsEBFRu8aBG9ZhyvedYYWIiIgUjWGFiIiITCZJEnbu3Nkq12JYISIiskEZGRlQq9VISEgwqnxAQABWrFhhtuvn5+djxIgRZjtfY2xiNBAREZHi/PwzcOWK4f0uLkBgoMUuv379ejz11FNYv349Lly4AF9f3xafs6amBpIkGTWM28fHp8XXMxZbVoiIiEz1889Ar15A//6GX7161ZazgPLycnz00Uf429/+hoSEBKSkpDRaPiYmBmfPnsWzzz4LSZK0nVtTUlLg7u6O3bt3IyQkBBqNBufOncN3332H+++/H7fddhvc3NwwZMgQZGZm6pyz/mOgvLw8SJKE7du3Y+jQoejQoQPCwsKQkZFhlvtlWCEiIjJVXYvKpk3AsWMNX5s26ZYzs48//hi9e/dGUFAQJk6ciA0bNkAIYbD89u3b0a1bNyxZsgT5+fnIz8/X7rt69Spef/11rFu3DqdOnYKXlxeuXLmCKVOm4KuvvsK3336LwMBAjBw5EleauJ8FCxZg7ty5yMrKQq9evZCUlITq6uoW3y8fAxERETVXcDAQEdHql12/fj0mTpwIABg+fDhKS0tx8OBBxMTE6C3v6ekJtVoNFxeXBo9vqqqq8PbbbyMsLEy7LTY2VqfMu+++C3d3dxw8eBCjRo0yWK+5c+dq+9AsXrwYd955J3755Rf07t27ObepxZYVIqJ2wgtV8ENlg1f41UsIv3oJPStLrV1FMkJOTg6OHDmCpKQkAICdnR3Gjx+P9evXN+t8Dg4O6Nu3r862wsJCzJgxA4GBgXBzc4OrqyvKy8tx7ty5Rs9V/zx10+jXTavfEmxZISJqB7xQhSW4oHffgtP/n/bvIcHj8IvGrbWqRc2wfv16VFdX63SoFUJAo9Fg1apVcHMz7f1zcnJqMEHblClT8Mcff2DlypXw9/eHRqNBVFRUk6tT29vba/9ed05zLBLJlhUionZAA+M+MJxrmp76nKynuroaH3zwAZYtW4asrCzt6/vvv4evry+2bNli8FgHBwftEgNN+frrr/H0009j5MiRuPPOO6HRaHDp0iVz3YbJGFaIiIhsxJ49e1BcXIwnnngCoaGhOq8HH3yw0UdBAQEBOHToEH7//fcmg0dgYCA+/PBDZGdn4/Dhw3jssce0iw9aA8MKERFRc2VnA5mZDV/Z2Ra53Pr16xEXF6f3Uc+DDz6Io0eP4ocfftB77JIlS5CXl4cePXqgc+fOTV6nuLgYERERmDRpEp5++ml4eXmZ5R6aQxKNjXVSiLKyMri5ueFx+Jl12fkN4bFNFyKiZpmWdcDaVaB6/FCJBShostyAXqOR1eG2VqiR6UTNDVSf+A9KS0vh6ura4vNdv34dubm56N69OxwdHU07uG6elaacPm3RieFsmSnff3awJSIiMlVgYG0QseIMtu0JwwoREVFzMIi0GvZZISIiIkVjWCEiagcqjfx1X662b7oQUStr14+BLNUBkB13iUhpimCPhfBtdL6VSqgwOPsYBrdivUxxAzI2WrsSZBXtOqwQEbUnRWCrCdkmhhUionbMC1VNtrYw5JC1MawQEbVTja0XVN9C+DKwkFUxrBARtVPaFpVNm4Dg4IYFsrOBiRONXleIyFIYVoiI2rvgYCAiwtq1IBsTEBCA2bNnY/bs2Ra/lklDl9esWYO+ffvC1dUVrq6uiIqKwn//+99Gj/nkk0/Qu3dvODo6ok+fPvjss89aVGEiIqL2bOrUqZAkSfvq1KkThg8fbnBNoDoxMTFmDRbfffcd/vKXv5jtfI0xKax069YNr732Go4dO4ajR48iNjYWY8eOxalTp/SW/+abb5CUlIQnnngCx48fR2JiIhITE3Hy5EmzVJ6IiMjaamqA9HRgy5baP2tqLH/N4cOHIz8/H/n5+di/fz/s7OwwatSoFp9XCIHq6mqjynbu3BkdOnRo8TWNYVJYGT16NEaOHInAwED06tULS5cuhbOzM7799lu95VeuXInhw4fjueeeQ3BwMF5++WVERERg1apVZqk8ERGRNW3fDvTsCQwdCkyYUPtnz5612y1Jo9HAx8cHPj4+CA8Px7x583D+/HlcvHhRb/mpU6fi4MGDWLlypbZFJi8vD+np6ZAkCf/973/Rv39/aDQafPXVVzhz5gzGjh0Lb29vODs74+6778bnn3+uc86AgACsWLFC+7UkSVi3bh0eeOABdOjQAYGBgdi9e7dZ7rfZM9jW1NRg69atqKioQFRUlN4yGRkZiIuL09kWHx+PjIyMRs9dWVmJsrIynRcREZGSbN8OPPQQ0KcPkJFRu6ZhRkbt1w89ZPnAUqe8vBybNm1Cz5490alTJ71lVq5ciaioKMyYMUPbIuPn56fdP2/ePLz22mvIzs5G3759UV5ejpEjR2L//v04fvw4hg8fjtGjR+PcuXON1mXx4sV45JFH8MMPP2DkyJF47LHHcPny5Rbfo8kdbE+cOIGoqChcv34dzs7O2LFjB0JCQvSWLSgogLe3t842b29vFBQ0vkx5cnIyFi9ebGrViIioObKzTdtOqKkB/vEPYNQoYOdOQHXzv/6RkbVfJyYCc+cCY8cCarX5r79nzx44OzsDACoqKtClSxfs2bMHKpX+Ngg3Nzc4ODigQ4cO8PHxabB/yZIluP/++7Vfe3p6IiwsTPv1yy+/jB07dmD37t2YNWuWwXpNnToVSUlJAIBXX30V//73v3HkyBEMHz68WfdZx+SwEhQUhKysLJSWluLTTz/FlClTcPDgQYOBpTnmz5+POXPmaL8uKyvTSYBERNRy2vWCJk40rhxpffklkJdX20/l1nygUgHz5wPR0bXlYmLMf/2hQ4dizZo1AIDi4mK8/fbbGDFiBI4cOQJ/f3+Tz3fXXXfpfF1eXo6XXnoJqampyM/PR3V1Na5du9Zky0rfvn21f+/YsSNcXV1RVFRkcn1uZXJYcXBwQM+ePQEA/fv3x3fffYeVK1finXfeaVDWx8cHhYWFOtsKCwv1prr6NBoNNBqNqVUjIiITGLteECeEayg/v/bP0FD9++u215Uzt44dO2o/iwFg3bp1cHNzw3vvvYdXXnmlWeerb+7cuUhLS8O//vUv9OzZE05OTnjooYdw48aNRs9jb6/7b0WSJMhyy+fpafE8K7Iso7KyUu++qKgo7N+/X2eoVFpamsE+LkRE1LoYRJqnS5faP0+erH30c6u6Qa915SxNkiSoVCpcu3bNYBkHBwfUGDlU6euvv8bUqVPxwAMPAKhtacnLyzNHVZvFpLAyf/58jBgxArfffjuuXLmCzZs3Iz09Hfv27QMATJ48GV27dkVycjIA4JlnnsGQIUOwbNkyJCQkYOvWrTh69Cjeffdd898JERFRKxk0CAgIAF59VbfPCgDIMpCcDHTvXlvOEiorK7X9P4uLi7Fq1SqUl5dj9OjRBo8JCAjA4cOHkZeXB2dnZ3h6ehosGxgYiO3bt2P06NGQJAn/7//9P7O0kDSXSQ8ii4qKMHnyZAQFBeG+++7Dd999h3379mk75Zw7dw759dq8oqOjsXnzZrz77rsICwvDp59+ip07dyLUULsZERGRDVCrgWXLgD17ajvT1h8NlJhYu/1f/7JM51oA2Lt3L7p06YIuXbrgnnvuwXfffYdPPvkEMY10kJk7dy7UajVCQkLQuXPnRvufLF++HB4eHoiOjsbo0aMRHx+PCCvOciwJIYTVrm6ksrIyuLm54XH4wcEGOnptCI+1dhWIrG5a1gFrV4HamBuQsRHnUVpaCldX1xaf7/r168jNzUX37t3h6OjYrHNs3147Kqj+E5Lu3WuDyrhxLa5im2bK959rAxERETXTuHG1w5O//LK2M22XLrWPfizVotJeMawQERG1gFptmeHJ9CflP1MhIiKido1hhYiIiBSNj4EswBIdC9lpl4iI2iu2rBAREZGiMawQERGRojGsEBERkaIxrBAREZGiMawQERGRojGsEBER2aCMjAyo1WokJCQYVT4gIAArVqwwax1iYmIwe/Zss55THw5dJiIiao6ff65dvdAQFxcgMNBil1+/fj2eeuoprF+/HhcuXICvr6/FrmVtbFkhIiIy1c8/A716Af37G3716lVbzgLKy8vx0Ucf4W9/+xsSEhKQkpLSaPmYmBicPXsWzz77LCRJgiRJ2n1fffUVBg0aBCcnJ/j5+eHpp59GRUWFdv/bb7+NwMBAODo6wtvbGw899BAAYOrUqTh48CBWrlypPWde/RUdzYhhhYiIyFSNtag0p5yJPv74Y/Tu3RtBQUGYOHEiNmzYACGEwfLbt29Ht27dsGTJEuTn5yM/Px8AcObMGQwfPhwPPvggfvjhB3z00Uf46quvMGvWLADA0aNH8fTTT2PJkiXIycnB3r17MXjwYADAypUrERUVhRkzZmjP6efnZ5H75WMgIiIiG7N+/XpMnDgRADB8+HCUlpbi4MGDiDGwoqKnpyfUajVcXFzg4+Oj3Z6cnIzHHntM2+8kMDAQ//73vzFkyBCsWbMG586dQ8eOHTFq1Ci4uLjA398f/fr1AwC4ubnBwcEBHTp00DmnJbBlhYiIyIbk5OTgyJEjSEpKAgDY2dlh/PjxWL9+vcnn+v7775GSkgJnZ2ftKz4+HrIsIzc3F/fffz/8/f1xxx13YNKkSfjPf/6Dq1evmvuWmsSWFSIiIhuyfv16VFdX63SoFUJAo9Fg1apVcHNzM/pc5eXlePLJJ/H000832Hf77bfDwcEBmZmZSE9Px//+9z8sXLgQL730Er777ju4u7ub43aMwrBCRERkI6qrq/HBBx9g2bJlGDZsmM6+xMREbNmyBX/961/1Huvg4ICamhqdbREREfjxxx/Rs2dPg9e0s7NDXFwc4uLisGjRIri7u+PAgQMYN26c3nNaAsMKERGRjdizZw+Ki4vxxBNPNGhBefDBB7F+/XqDYSUgIACHDh3Co48+Co1Gg9tuuw0vvPACIiMjMWvWLEyfPh0dO3bEjz/+iLS0NKxatQp79uzBr7/+isGDB8PDwwOfffYZZFlGUFCQ9pyHDx9GXl4enJ2d4enpCZXK/D1M2GeFiIjIRqxfvx5xcXF6H/U8+OCDOHr0KH744Qe9xy5ZsgR5eXno0aMHOnfuDADo27cvDh48iNOnT2PQoEHo168fFi5cqH3E5O7uju3btyM2NhbBwcFYu3YttmzZgjvvvBMAMHfuXKjVaoSEhKBz5844d+6cRe5bEo2NdVKIsrIyuLm54XH4waGd5qsN4bHWrgKRSaZlHbDYub1QBQ1kg/sroUIR7C12fbKOG5CxEedRWloKV1fXFp/v+vXryM3NRffu3eHo6GjawXXzrDTl9GmLTgxny0z5/vMxEBHZFC9UYQkuNFluIXwZWMhyAgNrg4gVZ7BtTxhWiMimaFtUNm0CgoMbFsjOBiZObLTlhcgsGERaDcMKEdmm4GAgIsLatSCiVtA+O4AQERGRzWDLio2wVGdFdtwlS3aEJSIyB7asEBERkaIxrBAREZGi8TEQEdmm7GzTthORzWJYISKbUlnXIDxxonHliMjmMawQkdWZMiNtEeyxEL6cwZaoHWFYISKras6MtAwi1J5NnToV77//vvZrT09P3H333fjnP/+Jvn37GjwuJiYG4eHhWLFihVnrUlJSgp07d5rtnPqwnZSIrEpnRtpjxxq+Nm3SLUekMDU1QHo6sGVL7Z81NZa/5vDhw5Gfn4/8/Hzs378fdnZ2GDVqlOUvbCUMK0SkDHUz0t760jelPpFCbN8OBAQAQ4cCEybU/hkQULvdkjQaDXx8fODj44Pw8HDMmzcP58+fx8WLF/WWnzp1Kg4ePIiVK1dCkiRIkoS8vDwAwMmTJzFixAg4OzvD29sbkyZNwqVLl7THfvrpp+jTpw+cnJzQqVMnxMXFoaKiAi+99BLef/997Nq1S3vO9PR0i9wvwwoREVEzbN8OPPQQ8Ntvutt//712u6UDS53y8nJs2rQJPXv2RKdOnfSWWblyJaKiojBjxgxti4yfnx9KSkoQGxuLfv364ejRo9i7dy8KCwvxyCOPAADy8/ORlJSEadOmITs7G+np6Rg3bhyEEJg7dy4eeeQRnVae6Ohoi9wj+6wQERGZqKYGeOYZQIiG+4QAJAmYPRsYOxZQq81//T179sDZ2RkAUFFRgS5dumDPnj1QqfS3Qbi5ucHBwQEdOnSAj4+PdvuqVavQr18/vPrqq9ptGzZsgJ+fH06fPo3y8nJUV1dj3Lhx8Pf3BwD06dNHW9bJyQmVlZU657QEtqwQERGZ6MsvG7ao1CcEcP58bTlLGDp0KLKyspCVlYUjR44gPj4eI0aMwNmzZ006z/fff48vvvgCzs7O2lfv3r0BAGfOnEFYWBjuu+8+9OnTBw8//DDee+89FBcXW+KWGsWwQkREZKL8fPOWM1XHjh3Rs2dP9OzZE3fffTfWrVuHiooKvPfeeyadp7y8HKNHj9YGn7rXzz//jMGDB0OtViMtLQ3//e9/ERISgrfeegtBQUHIzc21zI0ZwMdARKQMnJGWbEiXLuYt11KSJEGlUuHatWsGyzg4OKDmlqFKERER2LZtGwICAmBnpz8SSJKEgQMHYuDAgVi4cCH8/f2xY8cOzJkzR+85LYFhhYisijPSki0aNAjo1q22M62+fiuSVLt/0CDLXL+yshIFBQUAgOLiYqxatUrbSmJIQEAADh8+jLy8PDg7O8PT0xMzZ87Ee++9h6SkJDz//PPw9PTEL7/8gq1bt2LdunU4evQo9u/fj2HDhsHLywuHDx/GxYsXEXxzlF5AQAD27duHnJwcdOrUCW5ubrC3N/88SAwrRGRVnJGWbJFaDaxcWTvqR5J0A4sk1f65YoVlOtcCwN69e9HlZrONi4sLevfujU8++QQxMTEGj5k7dy6mTJmCkJAQXLt2Dbm5uQgICMDXX3+NF154AcOGDUNlZSX8/f0xfPhwqFQquLq64tChQ1ixYgXKysrg7++PZcuWYcSIEQCAGTNmID09HXfddRfKy8vxxRdfNFqH5pKE0JcJlaWsrAxubm54HH5w4P+uzGpDeKy1q0BWNi3rgLWrQGSUG5CxEedRWloKV1fXFp/v+vXryM3NRffu3eHo6Nisc2zfXjsqqH5nWz+/2qAyblyLq9immfL9N+mTPzk5GXfffTdcXFzg5eWFxMRE5OTkNHpMSkqKdrKYuldz/1EQEREpybhxQF4e8MUXwObNtX/m5jKomJtJj4EOHjyImTNn4u6770Z1dTVefPFFDBs2DD/++CM6duxo8DhXV1edUCPVtZERERHZOLUasMCTD6rHpLCyd+9ena9TUlLg5eWFY8eOYfDgwQaPkyTJ4hPGEBERUdvUog4gpaWlAGpXfGxMeXk5/P394efnh7Fjx+LUqVMtuSwRERG1I80OK7IsY/bs2Rg4cCBCQ0MNlgsKCsKGDRuwa9cubNq0CbIsIzo6Gr81MvVfZWUlysrKdF5ERESWYAPjTNokU77vzQ4rM2fOxMmTJ7F169ZGy0VFRWHy5MkIDw/HkCFDsH37dnTu3BnvvPOOwWOSk5Ph5uamffn5+TW3mkRERHqpb44rvnHjhpVr0j5dvXoVAIyal6VZ86zMmjULe/bswaFDh9CtWzeTjrW3t0e/fv3wyy+/GCwzf/58zJkzR/t1WVkZAwsRkY3xQpWi58+xs7NDhw4dcPHiRdjb2xtcBJDMSwiBq1evoqioCO7u7trQ2BiTwooQAk899RR27NiB9PR0dO/e3eRK1tTU4MSJExg5cqTBMhqNBhqNxuRzExGRMnihCktwoclyC+FrtcAiSRK6dOmC3NxckxcApJZzd3c3evCNSWFl5syZ2Lx5M3bt2gUXFxftVL9ubm5wcnICAEyePBldu3ZFcnIyAGDJkiWIjIxEz549UVJSgjfeeANnz57F9OnTTbk0ERHZEG2LyqZNwM2p2XVkZwMTJzba8tIaHBwcEBgYyEdBrcze3t6oFpU6JoWVNWvWAECDqXQ3btyIqVOnAgDOnTun05RWXFyMGTNmoKCgAB4eHujfvz+++eYbhISEmHJpIiKyRcHBQESEtWvRKJVKxclKFc7kx0BNSU9P1/n6zTffxJtvvmlSpYiIiIjqsDcRERERKRrDChERESkawwoREREpWrPmWSEiIjJKdrZp24n0YFghIiKzq6xruJ840bhyRI1gWCEiIrMrgj0WwlfRM9iS7WBYISIii2AQIXNh+xsREREpGsMKERERKRrDChERESkawwoREREpGjvYEhFRo7xQxVE9ZFUMK0REbZQ5QoYXqrAEF5q81kL4MrCQxTCsEBG1QeYKGdqws2kTEBzcsEB2NjBxYqOhiKilGFaIqE3gowpdZg8ZwcFARIT5KkhkAoYVIrJ55mhFaLNhhyGD2gCGFSKyeca2Dhgqx34ZRMrGoctE1O61NOwQkWUxrBAREZGi8TEQERE1LTvbtO1EZsSwQkRkRorrqNvCkFFZ1wA/caJx5YgsgGGFiMhMlNRR11whowj2WAhfZQUwancYVoiIzKS5c5tYojXGnCGDQYSsjWGFiGyesY8gWu1RhQlzm1iyNYYhg9oKhhUisnktbUWwZtjhdPZETWNYIaI2oSWtCK3dL8MT1dq/+6Cq9i+caZbIIIYVIiK07iOTv+FSq12LqC3gWDMiImvYtAk4dqz2TyJqFFtWiIjMzZi5TfjYh8hoDCtERGZi7NwmRGQahhUiIjMxpqOuB6rxd319VjidPZFBDCtERGZkckddF5faPzmdPZFBDCtEZNMUtxZPEzzqhi3XbzHZsQOoqKj9e0EBMHcu1qMTCm7WW2n3QNTaGFaIyGYpaS0eY3ih6s9HQE20pBTAHuehaYVaESkfwwoR2Sxbm/3V2PoCfOxDVB/DChHZPlsbBtxEfdfgNkW0BBEpBcMKEbV52int9VBif5DL/NVMpIM/EUTU5j2BPxrdr5Q+LUSkH8MKEbV9L78MjBzZcLvC+rQQkX4MK0TU9nXvblt9WohIB8MKEdk+W5v91dbqS2RlDCtEZLOMXounY0fLV8YIxtaXw5aJdDGsEJHNamotHh9U1Xauvf32Vq6ZfsasHaTE0UlE1mZSfE9OTsbdd98NFxcXeHl5ITExETk5OU0e98knn6B3795wdHREnz598NlnnzW7wkRE9RXdnOlV36tAgR/6jdX3PDQMKkR6mBRWDh48iJkzZ+Lbb79FWloaqqqqMGzYMFTUrWmhxzfffIOkpCQ88cQTOH78OBITE5GYmIiTJ0+2uPJEREbJzgYyMxu+2EeEyCZIQgjR3IMvXrwILy8vHDx4EIMHD9ZbZvz48aioqMCePXu02yIjIxEeHo61a9cadZ2ysjK4ubnhcfjBgc9yzWpDeKy1q0BWNi3rgLWrYDG2tnYQNe4GZGzEeZSWlsLV1dXa1aFW1KI+K6WlpQAAT09Pg2UyMjIwZ84cnW3x8fHYuXOnwWMqKytRWVmp/bqsrKwl1SSidop9RIjahmaHFVmWMXv2bAwcOBChoaEGyxUUFMDb21tnm7e3NwoKCgwek5ycjMWLFze3akREWgwiRLav2c9UZs6ciZMnT2Lr1q3mrA8AYP78+SgtLdW+zp8/b/ZrEBERkW1oVsvKrFmzsGfPHhw6dAjdunVrtKyPjw8KCwt1thUWFsLHx8fgMRqNBhqNpjlVIyJqlBeq+FiIyMaYFFaEEHjqqaewY8cOpKeno3v37k0eExUVhf3792P27NnabWlpaYiKijK5skRELcEOt0S2yaSwMnPmTGzevBm7du2Ci4uLtt+Jm5sbnJycAACTJ09G165dkZycDAB45plnMGTIECxbtgwJCQnYunUrjh49infffdfMt0JE1Dhti8qmTUBwcMMCXNiQSJFMCitr1qwBAMTExOhs37hxI6ZOnQoAOHfuHFSqP7vCREdHY/Pmzfi///s/vPjiiwgMDMTOnTsb7ZRLRGRRwcFc2NAAPiYjJTL5MVBT0tPTG2x7+OGH8fDDD5tyKSIiamV8TEZKxRnWiIgIAIx+/MXHZNTaGFaIiIhI0RhWiIiISNFaNN0+EZFNMrSAIRc2JFIkhhUiajcq6xqTJ040rhwRKQLDChG1G1zYkMg2MawQUbvCIEJke9jWSUREAIx//MXHZNTa2LJCREQA+JiMlIthhYiItBhESInYlkdERESKxrBCREREisawQkRERIrGsEJERESKxrBCREREisawQkRERIrGsEJERESKxnlWiIiM4IUqTpZGZCUMK0RETfBCFZbgQpPlFsKXgYXIAhhWiIiaoG1R2bQJCA5uWCA7G5g4sdGWFyJqPoYVIiJjBQcDERHWrgVRu8MOtkRERKRoDCtERESkaAwrREREpGgMK0RERKRo7GBrIzaEx1q7CkSUnW3adiIyC4YVIqImVNY1Qk+c2Gg5T1QbPJ7zrxA1H8MKEVETimCPhfDVO4+KB6rxd1wCAPzt5p/6cMI4ouZjWCEiMkKTQYMTxhFZDMMKEZE5cMI4IovhaCAiIiJSNIYVIiIiUjSGFSIiIlI0hhUiIiJSNHawJSIyB04YR2QxDCtERC1g7IRxlWzIJmo2hhUiohZobMK4OpzBlqhlGFbIJgkhQZT3AqrdAbsSSM6nIUnC2tWidopBhMiyGFbI5sglEZAKJ6Dmmqd2m53TZcjem6Fyz7RizYiIyBL4EJVsilwSgZq8mRh+nwcyMoArV4CMDCA+1h01eTMhl3AGUSKitoZhhWyGEBKkwgkYNQrYtUtCZCTg7AxERgK7d6uQkCAgFSZBCMnaVSUiIjNiWCGbIcp7ofqaJxYskKC65V+uSgUsWKBC9bVOtX1ZiIiozTA5rBw6dAijR4+Gr68vJEnCzp07Gy2fnp4OSZIavAoKCppbZ2qvqt0BAKGh+ndrt98sR0REbYPJYaWiogJhYWFYvXq1Scfl5OQgPz9f+/Ly8jL10tTe2ZUAAE6e1L9bu/1mOSIiahtMHg00YsQIjBgxwuQLeXl5wd3d3eTjyDYJIUG+EgRU9IYQgOTyE1TOOS0aXiw5n4ad02W88oo7du9W6TwKkmVg6VIZdk7FgPNpM9wBEREpRav1WQkPD0eXLl1w//334+uvv26ty5IVyCURkLNXQHXueciFYyCKxkA+8zzw04oWjdaRJAHhvRmpqRLGjJF1RgONGSMjNVWC8N7C+VaIiNoYi4eVLl26YO3atdi2bRu2bdsGPz8/xMTEIDPT8HwYlZWVKCsr03mRbagbWiyqnDFiBHSHF8c5t3h4sco9E+qA1dh3oATR0YCrKxAdDew7UAx1wGrOs0JE1AZZfFK4oKAgBAUFab+Ojo7GmTNn8Oabb+LDDz/Ue0xycjIWL15s6aqRmQkhAQUT4OwMDB0qYedOaB/V1A4vljBmjMC+A0kQbseb3QKics+EcDsOdb0ZbOF8Giq2qBARtUlWGbo8YMAA/PLLLwb3z58/H6WlpdrX+fPnW7F21FyivBdqrnuivFzCiy/CwPBiySzDiyVJQOWSA5XHYahcWtYXhoiIlM0q0+1nZWWhS5cuBvdrNBpoNJpWrBGZRb0hwxxeTERE5mJyWCkvL9dpFcnNzUVWVhY8PT1x++23Y/78+fj999/xwQcfAABWrFiB7t27484778T169exbt06HDhwAP/73//MdxekDPWGDJ88Wfvo51YcXkxERKYyOawcPXoUQ4cO1X49Z84cAMCUKVOQkpKC/Px8nDt3Trv/xo0b+Mc//oHff/8dHTp0QN++ffH555/rnIPaBsn5NNSOl+Fk54FXX9XtswLUDS8WsHO6zOHFRERkNEkIofiH/WVlZXBzc8Pj8INDO10hYEN4rLWrYJS60UCSBCQk1PZdCQ2tbVFZulQgNRUctaMw07IOWLsKREa5ARkbcR6lpaVwdXW1dnWoFVmlzwq1XSr3TCBgNcSFKdi71wV79vy5z05TDnXA+wwqRERkEoYVMru6ocXylSCo6s1gC+ccDi8mIiKTMayQRUiSgNr1J8D1J2tXhahRXqiCBrLB/ZVQoQj2rVgjIroVwwoRtVteqMISXGiy3EL4MrAQWRHDChG1W9oWlU2bgODghgWys4GJExtteSEiy2NYISIKDgYimr9mFRFZVvscB0xEREQ2g2FF4WSocAGRkIvvgXwlqHaxQCIionaEj4EU7FfE44jdIpRW+wJna7fZOV2G7L2Zc5UQEVG7wZYVhfoV8fgcazBouA8yMoArV4CMDCA+1h01eTMhl/D5OhERtQ9sWVEgGSocsVuEhOHArl0q7fo6kZHA7t0qjBkjY9+BJAi345A4yZrZCSFBlPeqXRnargSS82l+n9u67GzTthNRq2JYUaACDEBptS8WLNBdCBCo/XrBAhVSUztBXd4LkkuOdSrZRsklEaj5fQJQ5fnnRvvLUHflo7e2qLKucXniROPKEZFVMKwo0FV4AahdAFAf7fZq91apT3tRtwhjA1W1j97ABRjbnCLYYyF8OYMtkcIxrChQBxQBqF2pODKy4f6TJ2/+xa6k1erU1gkh1baoAABuHXGlAiCj5vckSHz01uYwiBApH9s2FcgHR+BmdwFLX5Eh3/IfPlkGli6VYef0ByTn09apYBskynvdfPRjaGi4CqjqVFuOiIhaFVtWLGBDeGyLzyGXbMee1JkYM0bGggUqhIbWtqgsXSojNVWCOmALVzA2J2MfqfHRGxFRq2NYUSiVeyYQsBr7DkxAauqfnT3tnIprgwr7TpiXsY/U+OiNiKjVMawomMo9E8LtONT1htHC+TRbVCxAcj4N2F8Gqtyh/+moDNgX89EbEZEVsM+KwkmSgMolByqPw1C55LBzp4VIkoC662bU9lm5dWSIDECCuusWfv+JiKyAYYXoJpV7JtQBqwH7Et0d6qtQee+E5HbcKvUiImrvGFaI6lG5Z8Iu5DmovHcA6vLajTXOkAsfQPWPb3CZAyIiK2BYIbqFKO0HuTARqOmou6OK6zIREVkDwwpRPU1PDidQ83sShDA0HwsREZkbwwpRPZwcjohIeRhWiOrj5HBERIrDsEJUHyeHIyJSHIYVonq0k8MZXIVXBuy5LhMRUWtiWCGqh5PDEREpD8MK0S0MTg5nXwx1wGquy0RE1Mq4NlAbJYRUO2Ll5ppCkvNptgaYQOWeCcntOL+HREQKwLDSBsklEZAKJ6DmWv3Vmi9D9t7MVgETSJKA5JJj7WoQEbV7fAzUxsglEajJm4nh93kgIwO4cgXIyADiYzn7alOEkCBfCYJcfA/kK0Gc+I2ISCHYstKGCCFBKpyAUaOAXbskqG5G0chIYPduFcaMkbHvQBKE23E+zrgFW6OIiJSLLSttiCjvheprnliw4M+gUkelAhYsUKH6GmdfvRVbo4iIlI1hpS25OatqaKj+3drtnH1V69bWqMhIwNn5z9aohAQBqZBrARERWRPDSltyc1bVkyf179Zu5+yrWmyNIiJSPoaVNkRyPg07p8t45RUZ8i3zmckysHSpDDsnzr6qg61RRESK16472G4Ij7V2FcxKkgRk781ITZ2JMWNkLFigQmhobYvK0qUyUlMlqAO2QMXOtX+q1xoVGdlwN1ujiJrP3L9jRc0N4MR/zHpOsg3tOqy0RSr3TCBgNfYdmIDU1PojW4prg0obGtlijonv/myNcsfu3SqdR0F/tkYVA2yNIiKyGoaVNkjlngnhdhzqeh/kcD7dplpUzDXUmK1RRETKxz4rbZQkCahccqDyOAyVS06bmlfF3EON69YC2negBNHRgKsrEB0N7DvAtYCIiJSALStkUyw18V17aI0iIrJVbFkhm2LJocZtuTWKiMiWmRxWDh06hNGjR8PX1xeSJGHnzp1NHpOeno6IiAhoNBr07NkTKSkpzagqETjUmIioHTI5rFRUVCAsLAyrV682qnxubi4SEhIwdOhQZGVlYfbs2Zg+fTr27dtncmWJOPEdEVH7Y3KflREjRmDEiBFGl1+7di26d++OZcuWAQCCg4Px1Vdf4c0330R8fLypl6d2jkONiYjaH4v3WcnIyEBcXJzOtvj4eGRkZBg8prKyEmVlZTovIqC2X4nw3ozUVAljxsg6o4HGjKkdaiy8t7C/CRFRG2LxsFJQUABvb2+dbd7e3igrK8O1a9f0HpOcnAw3Nzfty8/Pz9LVJBvCocZERO2LIocuz58/H3PmzNF+XVZWxsBCOjjUmIio/bB4WPHx8UFhYaHOtsLCQri6usLJyUnvMRqNBhqNxtJVIxsnSQKSS461q0FERBZm8cdAUVFR2L9/v862tLQ0REVFWfrSRERE1AaYHFbKy8uRlZWFrKwsALVDk7OysnDu3DkAtY9wJk+erC3/17/+Fb/++iuef/55/PTTT3j77bfx8ccf49lnnzXPHRAREVGbZnJYOXr0KPr164d+/foBAObMmYN+/fph4cKFAID8/HxtcAGA7t27IzU1FWlpaQgLC8OyZcuwbt06DlsmIiIio5jcZyUmJgZCGO7EqG922piYGBw/ftzUSxERERFxbSAiIiJSNoYVIiIiUjRFzrNC1BJCSLWrLt+cf0VyPs0ZbYmIbBjDig3gh6/x5JII1Pw+Aajy/HOj/WWou27mzLZERDaKYUXh5JIISIUTUHPtzw9fO6fLkL354XsruSQCNXkzG+6ocq/dzqn49doQHmuR807LOmCR85L5WerfAJG5sM+KgtV9+A6/z0Nnwb742NoPX7kkwtpVVAwhpNoWFQCAdMteFQCBmt+TIMSt+4iISOkYVhRKCAlS4QSMGgXs2iUhMhJwdgYiI4Hdu1VISBCQCvnhW0eU97r56MfQ90MFVHWqLUdERDaFYUWhRHkvVF/zxIIFElS3vEsqFbBggQrV18z/4SuEBPlKEOTieyBfCbKdMFTtbt5yRESkGOyzolQ3P1RDQ/Xv1m4344evTXdOtSsxbzkiIlIMtqwo1c0P1ZMn9e/WbjfTh6+2c2qVh+6OKtvoHyM5nwbsLwOQDZSQAfs/assREZFNYVhRKMn5NOycLuOVV2TIt3z+yjKwdKkMOyfzfPi2hc6pkiSg7roZtfW/NbDIACSou27hkG8iIhvEsKJQkiQgvDcjNVXCmDGyzmigMWNkpKZKEN7m+fBtK51TVe6ZUAesBuxLdHfYF0PNYctERDaLfVYUTOWeCQSsxr4DE5CaWn+elWKoA7Y068NX3wRzbalzqso9E5LbcU6iR0TUhjCsKJzKPRPC7TjU9T584XwaqmZ8+BqaYE64HjTuBDbSOVWSBCSXHGtXg4iIzISPgWyAJAmoXHKg8jgMlUtOs1oJGptgTi5MBNRXwM6pRESkRAwr7YAxE8yp1AA7pxIRkRIxrLQDxkwwJ99wgcp7JzunEhGR4rDPSntg5ARzkmMR7EKeY+dUIiJSFIaV9qDeBHORkQ13159gjp1TiYhIafgYqB1ozQnmiIiIzI1hpR1ozQnmiIiIzI2PgdoJS0wwR0RE1BoYVtoRc04wR0RE1FoYVtoZdqAlIiJbwz4rREREpGg21bLyYZ/BkNQOrXpNfQv/sSMqERFR67GpsNLaDC38J3tvZodUIiKiVsLHQAY0tvBfTd5MyCUR1q4iERFRu8CwoocxC/9JhUkQQrJ2VYmIiNo8hhU9jFn4r/pap9q+LERERGRRDCv6GLnwX105IiIishyGFX3qLfynT/2F/4iIiMiyGFb04MJ/REREysGwogcX/iMiIlIOzrNiABf+IyIiUgaGlUZw4T8iIiLrY1hpAhf+IyIisi72WSEiIiJFY8sKGcRFHImISAkYVkgvuSQCNb9PAKr+7FwM+8tQd+UijkRE1Lr4GIgaqFvEEVUeujuquIgjERG1PoYV0iGEVNuiAgC4daFGFQCBmt+5iCMREbWeZoWV1atXIyAgAI6Ojrjnnntw5MgRg2VTUlIgSZLOy9HRsdkVJssS5b1uPvoxFEZUQBUXcSQiotZjclj56KOPMGfOHCxatAiZmZkICwtDfHw8ioqKDB7j6uqK/Px87evs2bMtqjRZkLGLM3IRRyIiaiUmh5Xly5djxowZePzxxxESEoK1a9eiQ4cO2LBhg8FjJEmCj4+P9uXt7d2iSpMFGbs4IxdxJCKiVmJSWLlx4waOHTuGuLi4P0+gUiEuLg4ZGRkGjysvL4e/vz/8/PwwduxYnDp1qvk1JouSnE8D9pcByAZKyIA9F3EkIqLWY1JYuXTpEmpqahq0jHh7e6OgoEDvMUFBQdiwYQN27dqFTZs2QZZlREdH47fffjN4ncrKSpSVlem8qHVIkoC662bU9lm5NbDIACSou3IRRyIiaj0Wn2clKioKUVFR2q+jo6MRHByMd955By+//LLeY5KTk7F48WJLV40MqFvEseE8K8VQd+UijkTWtCE81tpVIGp1JoWV2267DWq1GoWFhTrbCwsL4ePjY9Q57O3t0a9fP/zyyy8Gy8yfPx9z5szRfl1WVgY/Pz9TqkotpHLPhOR2nDPYEhGR1Zn0GMjBwQH9+/fH/v37tdtkWcb+/ft1Wk8aU1NTgxMnTqBLly4Gy2g0Gri6uuq8qPVJkoDKJQcqj8NQueTYRFARQoJ8JQhy8T2QrwRxPhgiojbA5MdAc+bMwZQpU3DXXXdhwIABWLFiBSoqKvD4448DACZPnoyuXbsiOTkZALBkyRJERkaiZ8+eKCkpwRtvvIGzZ89i+vTp5r0TavfkkghIhRNQc+3PR1d2Tpche3OJACIiW2ZyWBk/fjwuXryIhQsXoqCgAOHh4di7d6+20+25c+egUv3ZYFNcXIwZM2agoKAAHh4e6N+/P7755huEhISY7y6o3atbImDUKGDBAiA0FDh5EnjlFXekps4EAlYzsBAR2ShJCKH4tv2ysjK4ubnBrs9jkNQO1q4OKYwQEnD6DQy/zwO7dkmol5Uhy8CYMTL2HSgGej1vE4+y2oppWQesXYU2qT13sBU1N1B94j8oLS1l94B2hmsDkc0T5b1Qfc0TCxboBhUAUKmABQtUqL7GJQKIiGwVwwrZvptT/4eG6t+t3c4lAoiIbBLDCtm+m1P/nzypf7d2O5cIICKySQwrZPMk59Owc7qMV16RId8y6a4sA0uXyrBz4hIBRES2imGFbJ4kCQjvzUhNlTBmjIyMDODKFSAjo7ZzbWqqBOHNJQKIiGyVxafbJ2oNdUsE7DswAamp9edZKYY6gEsEEBHZMoYVUgwhpBZN769yz4RwOw51vXPA+TRUbFEhIrJpDCukCOaafVaSBCSXHEtUkYiIrIR9Vsjq6mafHX6fh05/k/hYd9TkzYRcEmHtKpqE6xMREZkXW1bIqoSQIBVOwKhR0Jl9NjIS2L1bdXP22SQIt+M20UGW6xMREZkfW1bIqtrS7LNtrYWIiEgpGFbIutrI7LO3thBFRgLOzn+2ECUkCEiFSXwkRETUDAwrZF1tZPbZttRCRESkNAwrZFVtZvbZNtJCRESkRAwrZFVtZvbZNtJCRESkRBwNRFbXFmaf/bOFyB27d6t0HgX92UJUDCi9hYgUb1rWAbOfc0N4rNnPSWRODCukCLY++6wkCcjem5GaOhNjxshYsECF0NDaFpWlS2tbiNQBW2zmfoiIlIRhhRTD1mefbQstRERESsSwQmRGtt5CRESkRAwrRGZm6y1ERERKw9FAREREpGgMK0RERKRoDCtERESkaAwrREREpGgMK0RERKRoDCtERESkaAwrREREpGgMK0RERKRoDCtERESkaAwrREREpGgMK0RERKRoDCtERESkaAwrREREpGgMK0RERKRoDCtERESkaAwrREREpGgMK0RERKRodtaugCkmnTgEBzPmqw3hsWY7FxGRrZqWdcAi5+XvWDIXtqwQERGRojGsEBERkaLZ1GMgInMQQoIo7wVUuwN2JZCcT0OShLWrRUREBjCsULsil0Sg5vcJQJXnnxvtL0PddTNU7pnWqxgRERnEx0CklxAS5CtBkIvvgXwlCEJI1q5Si8klEajJmwlUeejuqHJHTd5MyCUR1qkYERE1qllhZfXq1QgICICjoyPuueceHDlypNHyn3zyCXr37g1HR0f06dMHn332WbMqS61DLokATr+BmjMvoObsk6g58wJw+g2b/jAXQqptUQEA3Bq8VAAEan5PahOhjIiorTE5rHz00UeYM2cOFi1ahMzMTISFhSE+Ph5FRUV6y3/zzTdISkrCE088gePHjyMxMRGJiYk4efJkiytP5lfX+jD8Pg9kZABXrgAZGUB8rG23PojyXjcf/RgKIyqgqlNtOSIiUhSTw8ry5csxY8YMPP744wgJCcHatWvRoUMHbNiwQW/5lStXYvjw4XjuuecQHByMl19+GREREVi1alWLK0/mJYQEqXACRo0Cdu2SEBkJODsDkZHA7t0qJCQISIU22vpQ7W7eckRE1GpMCis3btzAsWPHEBcX9+cJVCrExcUhIyND7zEZGRk65QEgPj7eYHkAqKysRFlZmc6LLE+U90L1NU8sWCBBdcu/DJUKWLBAheprNtr6YFdi3nJERNRqTAorly5dQk1NDby9vXW2e3t7o6CgQO8xBQUFJpUHgOTkZLi5uWlffn5+plSTmutmq0JoqP7d2u022PogOZ8G7C8DkA2UkAH7P2rLERGRoihyNND8+fNRWlqqfZ0/f97aVWofbrYqGOpOpN1ug60PkiSg7roZtX1Wbg0sMgAJ6q5bON8KEZECmRRWbrvtNqjVahQWFupsLywshI+Pj95jfHx8TCoPABqNBq6urjovsjzJ+TTsnC7jlVdkyLd8nssysHSpDDsn2219ULlnQh2wGrAv0d1hXwx1wGrOs0JEpFAmhRUHBwf0798f+/fv126TZRn79+9HVFSU3mOioqJ0ygNAWlqawfJkPZIkILw3IzVVwpgxss5ooDFjZKSmShDett36oHLPhF3Ic1D3eB1q/3eg7vE67EKeZ1AhIlIwk2ewnTNnDqZMmYK77roLAwYMwIoVK1BRUYHHH38cADB58mR07doVycnJAIBnnnkGQ4YMwbJly5CQkICtW7fi6NGjePfdd817J2QWKvdMIGA19h2YgNTUP2d5tXMqhjpgS5v4UJckAcklx9rVICIiI5kcVsaPH4+LFy9i4cKFKCgoQHh4OPbu3avtRHvu3Dmo6g0liY6OxubNm/F///d/ePHFFxEYGIidO3ci1FAvTrI6lXsmhNtxqOutnwPn01DZcIsKERHZLkkIofhPoLKyMri5ueFx+MHBjH2CN4THmu1cRKRrWtYBa1eBrMzcv2NFzQ1Un/gPSktL2ZexnVHkaCAiIiKiOgwrREREpGgMK0RERKRoDCtERESkaCaPBmpLLNUBkB13iYjM/zv2BmRsNOsZyVawZYWIiIgUjWGFiIiIFI1hhYiIiBSNYYWIiIgUjWGFiIiIFI1hhYiIiBSNYYWIiIgUjWGFiIiIFI1hhYiIiBSNYYWIiIgUjWGFiIiIFI1hhYiIiBSNYYWIiIgUjWGFiIiIFI1hhYiIiBSNYYWIiIgUjWGFiIiIFI1hhYiIiBSNYYWIiIgUzc7aFTCGEAIAcAOylWtiHFFzw9pVILI6W/l5JdtR92+q7jOB2g9J2MC7/ttvv8HPz8/a1SAiIgU4f/48unXrZu1qUCuyibAiyzIuXLgAFxcXSJLU6tcvKyuDn58fzp8/D1dX11a/vqXwvmxHW7wngPdla6x9X0IIXLlyBb6+vlCp2IuhPbGJx0AqlUoRKdrV1bVN/eKpw/uyHW3xngDel62x5n25ublZ5bpkXYymREREpGgMK0RERKRoDCtG0Gg0WLRoETQajbWrYla8L9vRFu8J4H3ZmrZ6X6R8NtHBloiIiNovtqwQERGRojGsEBERkaIxrBAREZGiMawQERGRojGs3LR69WoEBATA0dER99xzD44cOdJo+U8++QS9e/eGo6Mj+vTpg88++6yVamoaU+4rJSUFkiTpvBwdHVuxtk07dOgQRo8eDV9fX0iShJ07dzZ5THp6OiIiIqDRaNCzZ0+kpKRYvJ6mMvW+0tPTG7xXkiShoKCgdSpshOTkZNx9991wcXGBl5cXEhMTkZOT0+RxSv/Zas592cLP1po1a9C3b1/thG9RUVH473//2+gxSn+vqO1gWAHw0UcfYc6cOVi0aBEyMzMRFhaG+Ph4FBUV6S3/zTffICkpCU888QSOHz+OxMREJCYm4uTJk61c88aZel9A7cyU+fn52tfZs2dbscZNq6ioQFhYGFavXm1U+dzcXCQkJGDo0KHIysrC7NmzMX36dOzbt8/CNTWNqfdVJycnR+f98vLyslANTXfw4EHMnDkT3377LdLS0lBVVYVhw4ahoqLC4DG28LPVnPsClP+z1a1bN7z22ms4duwYjh49itjYWIwdOxanTp3SW94W3itqQwSJAQMGiJkzZ2q/rqmpEb6+viI5OVlv+UceeUQkJCTobLvnnnvEk08+adF6msrU+9q4caNwc3Nrpdq1HACxY8eORss8//zz4s4779TZNn78eBEfH2/BmrWMMff1xRdfCACiuLi4VepkDkVFRQKAOHjwoMEytvKzVZ8x92VrP1t1PDw8xLp16/Tus8X3imxXu29ZuXHjBo4dO4a4uDjtNpVKhbi4OGRkZOg9JiMjQ6c8AMTHxxssbw3NuS8AKC8vh7+/P/z8/Br9X5WtsIX3qiXCw8PRpUsX3H///fj666+tXZ1GlZaWAgA8PT0NlrHF98uY+wJs62erpqYGW7duRUVFBaKiovSWscX3imxXuw8rly5dQk1NDby9vXW2e3t7G3z+X1BQYFJ5a2jOfQUFBWHDhg3YtWsXNm3aBFmWER0djd9++601qmwRht6rsrIyXLt2zUq1arkuXbpg7dq12LZtG7Zt2wY/Pz/ExMQgMzPT2lXTS5ZlzJ49GwMHDkRoaKjBcrbws1WfsfdlKz9bJ06cgLOzMzQaDf76179ix44dCAkJ0VvW1t4rsm02seoytY6oqCid/0VFR0cjODgY77zzDl5++WUr1oxuFRQUhKCgIO3X0dHROHPmDN588018+OGHVqyZfjNnzsTJkyfx1VdfWbsqZmXsfdnKz1ZQUBCysrJQWlqKTz/9FFOmTMHBgwcNBhai1tLuW1Zuu+02qNVqFBYW6mwvLCyEj4+P3mN8fHxMKm8NzbmvW9nb26Nfv3745ZdfLFHFVmHovXJ1dYWTk5OVamUZAwYMUOR7NWvWLOzZswdffPEFunXr1mhZW/jZqmPKfd1KqT9bDg4O6NmzJ/r374/k5GSEhYVh5cqVesva0ntFtq/dhxUHBwf0798f+/fv126TZRn79+83+Kw2KipKpzwApKWlGSxvDc25r1vV1NTgxIkT6NKli6WqaXG28F6ZS1ZWlqLeKyEEZs2ahR07duDAgQPo3r17k8fYwvvVnPu6la38bMmyjMrKSr37bOG9ojbE2j18lWDr1q1Co9GIlJQU8eOPP4q//OUvwt3dXRQUFAghhJg0aZKYN2+etvzXX38t7OzsxL/+9S+RnZ0tFi1aJOzt7cWJEyesdQt6mXpfixcvFvv27RNnzpwRx44dE48++qhwdHQUp06dstYtNHDlyhVx/Phxcfz4cQFALF++XBw/flycPXtWCCHEvHnzxKRJk7Tlf/31V9GhQwfx3HPPiezsbLF69WqhVqvF3r17rXULepl6X2+++abYuXOn+Pnnn8WJEyfEM888I1Qqlfj888+tdQsN/O1vfxNubm4iPT1d5Ofna19Xr17VlrHFn63m3Jct/GzNmzdPHDx4UOTm5ooffvhBzJs3T0iSJP73v/8JIWzzvaK2g2HlprfeekvcfvvtwsHBQQwYMEB8++232n1DhgwRU6ZM0Sn/8ccfi169egkHBwdx5513itTU1FausXFMua/Zs2dry3p7e4uRI0eKzMxMK9TasLohu7e+6u5jypQpYsiQIQ2OCQ8PFw4ODuKOO+4QGzdubPV6N8XU+3r99ddFjx49hKOjo/D09BQxMTHiwIED1qm8AfruB4DO998Wf7aac1+28LM1bdo04e/vLxwcHETnzp3Ffffdpw0qQtjme0VthySEEK3XjkNERERkmnbfZ4WIiIiUjWGFiIiIFI1hhYiIiBSNYYWIiIgUjWGFiIiIFI1hhYiIiBSNYYWIiIgUjWGFiIiIFI1hhYiIiBSNYYWIiIgUjWGFiIiIFI1hhYiIiBTt/wcucbL679dtpQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 500x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.figure(figsize=(5, 5))\n",
"meshgrid_colors = meshgrid_colors.reshape(grid_x.shape)\n",
"plt.pcolormesh(grid_x, grid_y, meshgrid_colors, cmap=\"RdBu\", shading=\"auto\")\n",
"\n",
"plt.scatter(\n",
" train_features[:, 0][train_labels == 0],\n",
" train_features[:, 1][train_labels == 0],\n",
" marker=\"s\",\n",
" facecolors=\"w\",\n",
" edgecolors=\"r\",\n",
" label=\"A train\",\n",
")\n",
"plt.scatter(\n",
" train_features[:, 0][train_labels == 1],\n",
" train_features[:, 1][train_labels == 1],\n",
" marker=\"o\",\n",
" facecolors=\"w\",\n",
" edgecolors=\"b\",\n",
" label=\"B train\",\n",
")\n",
"\n",
"plt.scatter(\n",
" test_features[:, 0][test_labels == 0],\n",
" test_features[:, 1][test_labels == 0],\n",
" marker=\"s\",\n",
" facecolors=\"r\",\n",
" edgecolors=\"r\",\n",
" label=\"A test\",\n",
")\n",
"plt.scatter(\n",
" test_features[:, 0][test_labels == 1],\n",
" test_features[:, 1][test_labels == 1],\n",
" marker=\"o\",\n",
" facecolors=\"b\",\n",
" edgecolors=\"b\",\n",
" label=\"B test\",\n",
")\n",
"\n",
"plt.legend(bbox_to_anchor=(1.05, 1), loc=\"upper left\", borderaxespad=0.0)\n",
"plt.title(\"Pegasos Classification\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 65,
"id": "fddca436-0531-4f77-9c54-71a0ed4dc462",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Time in seconds since end of run: 1700640813.010587\n",
"Wed Nov 22 08:13:33 2023\n"
]
}
],
"source": [
"seconds = time.time()\n",
"print(\"Time in seconds since end of run:\", seconds)\n",
"local_time = time.ctime(seconds)\n",
"print(local_time)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"id": "imperial-promise",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/html": [
"<h3>Version Information</h3><table><tr><th>Software</th><th>Version</th></tr><tr><td><code>qiskit</code></td><td>0.44.1</td></tr><tr><td><code>qiskit-terra</code></td><td>0.25.1</td></tr><tr><td><code>qiskit_machine_learning</code></td><td>0.6.1</td></tr><tr><th colspan='2'>System information</th></tr><tr><td>Python version</td><td>3.10.8</td></tr><tr><td>Python compiler</td><td>GCC 10.4.0</td></tr><tr><td>Python build</td><td>main, Nov 22 2022 08:26:04</td></tr><tr><td>OS</td><td>Linux</td></tr><tr><td>CPUs</td><td>8</td></tr><tr><td>Memory (Gb)</td><td>31.142810821533203</td></tr><tr><td colspan='2'>Wed Nov 22 08:13:33 2023 UTC</td></tr></table>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div style='width: 100%; background-color:#d5d9e0;padding-left: 10px; padding-bottom: 10px; padding-right: 10px; padding-top: 5px'><h3>This code is a part of Qiskit</h3><p>© Copyright IBM 2017, 2023.</p><p>This code is licensed under the Apache License, Version 2.0. You may<br>obtain a copy of this license in the LICENSE.txt file in the root directory<br> of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.<p>Any modifications or derivative works of this code must retain this<br>copyright notice, and modified files need to carry a notice indicating<br>that they have been altered from the originals.</p></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import qiskit.tools.jupyter\n",
"\n",
"%qiskit_version_table\n",
"%qiskit_copyright"
]
}
],
"metadata": {
"celltoolbar": "Tags",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"1b3456f682144beeaec61de127255f23": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"description_width": "",
"font_size": null,
"text_color": null
}
},
"22ac8e820eb543138cfebf0dafe77136": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_b3bcc1a52ab64fa283a8a642b4777df2",
"style": "IPY_MODEL_f00034b9b85f49d0a754f396a37354ed",
"value": "<h5>Status</h5>"
}
},
"41fd22798e464ef7996d6a6ad6e13d52": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"description_width": "",
"font_size": null,
"text_color": null
}
},
"4308592f5e0a411c80bd75ca8247cdc4": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"width": "70px"
}
},
"446272bfa6a048389eb5efa3a6ef0af8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_6f0b6cb82e7e470c943a33461af8bc16",
"style": "IPY_MODEL_41fd22798e464ef7996d6a6ad6e13d52",
"value": "<h5>Backend</h5>"
}
},
"4b9c0b1d4326437e86e9e30db1d5fea6": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_4308592f5e0a411c80bd75ca8247cdc4",
"style": "IPY_MODEL_6039025fb08c4be5a9191a654dec032d",
"value": "<h5>Queue</h5>"
}
},
"4d2cce1675aa4f2b9c1cf23412aac9a7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"width": "190px"
}
},
"54c195dc23cb459890244746aba5053a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"description_width": "",
"font_size": null,
"text_color": null
}
},
"6039025fb08c4be5a9191a654dec032d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"description_width": "",
"font_size": null,
"text_color": null
}
},
"6eb42a5a8aa7449b9977c6288066562f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"description_width": "",
"font_size": null,
"text_color": null
}
},
"6f0b6cb82e7e470c943a33461af8bc16": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"width": "145px"
}
},
"7aa4f6cd229542e7a6497e0248615f55": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_f1653f08dcdf410e97c8b441d1ddbe9a",
"style": "IPY_MODEL_54c195dc23cb459890244746aba5053a",
"value": "<h5>Message</h5>"
}
},
"a3d541cb70c34d85b34fdc709f7e7af4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
"state": {
"children": [
"IPY_MODEL_aecc303bf5fe454a81dbb1a3ba7ac3d5",
"IPY_MODEL_446272bfa6a048389eb5efa3a6ef0af8",
"IPY_MODEL_22ac8e820eb543138cfebf0dafe77136",
"IPY_MODEL_4b9c0b1d4326437e86e9e30db1d5fea6",
"IPY_MODEL_7aa4f6cd229542e7a6497e0248615f55"
],
"layout": "IPY_MODEL_f02c3ce2ffd94b5abe9fa5128064baf7"
}
},
"a59a211db01941b6b5bb22fd4d0e8bf0": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"grid_template_areas": "\n \". . . . right \"\n ",
"grid_template_columns": "20% 20% 20% 20% 20%",
"width": "100%"
}
},
"a71e1bfeecfa4a298bdf3fe6cffad1b7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"grid_area": "right",
"padding": "0px 0px 0px 0px",
"width": "70px"
}
},
"aecc303bf5fe454a81dbb1a3ba7ac3d5": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_4d2cce1675aa4f2b9c1cf23412aac9a7",
"style": "IPY_MODEL_1b3456f682144beeaec61de127255f23",
"value": "<h5>Job ID</h5>"
}
},
"b3bcc1a52ab64fa283a8a642b4777df2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"width": "95px"
}
},
"ba447f375c82410cbf25489d7a0ca515": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ButtonStyleModel",
"state": {
"font_family": null,
"font_size": null,
"font_style": null,
"font_variant": null,
"font_weight": null,
"text_color": null,
"text_decoration": null
}
},
"c18f1f32fa9a46a992f26adafe4aa32b": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "GridBoxModel",
"state": {
"children": [
"IPY_MODEL_e94a67deff694b75aa9135bba1d838d0"
],
"layout": "IPY_MODEL_a59a211db01941b6b5bb22fd4d0e8bf0"
}
},
"cfce2ae34c3944ec9f8cbbefdc50015a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"layout": "IPY_MODEL_eb4c6152dc4c4ac586f6199d76cbf875",
"style": "IPY_MODEL_6eb42a5a8aa7449b9977c6288066562f",
"value": "<p style='font-family: IBM Plex Sans, Arial, Helvetica, sans-serif; font-size: 20px; font-weight: medium;'>Circuit Properties</p>"
}
},
"e94a67deff694b75aa9135bba1d838d0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ButtonModel",
"state": {
"button_style": "primary",
"description": "Clear",
"layout": "IPY_MODEL_a71e1bfeecfa4a298bdf3fe6cffad1b7",
"style": "IPY_MODEL_ba447f375c82410cbf25489d7a0ca515",
"tooltip": null
}
},
"eb4c6152dc4c4ac586f6199d76cbf875": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"margin": "0px 0px 10px 0px"
}
},
"f00034b9b85f49d0a754f396a37354ed": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"description_width": "",
"font_size": null,
"text_color": null
}
},
"f02c3ce2ffd94b5abe9fa5128064baf7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"margin": "0px 0px 0px 37px",
"width": "600px"
}
},
"f1653f08dcdf410e97c8b441d1ddbe9a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}